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Abstract— Manufacturing and transient faults may be abun-
dant in high density reconfigurable design fabrics built with nano-
scale technologies (silicon or other emerging technologies). Design
of reliable digital logic and architectures on such defective fabrics
will require adequate redundancy. However, analysis of redun-
dancy/reliability trade-offs for such designs will be required for
micro-architects to do design space explorations. An automated
computational scheme based on Markov Random Fields (MRFs)
and Belief Propagation techniques was incorporated in a tool
named NANOLAB to compute these trade-offs in the face of ther-
mal perturbations and interconnect noise. However, previously
this tool was used only for combinational design exploration.
In this paper, we show how this tool and the methodology can
be extended to analyze defect-tolerant programmable sequential
logic design. The effectiveness of this automation is illustrated
by analyzing reconfigurable Boolean networks formed by using
different industry standard configurable logic blocks (CLBs) in
the presence of thermal and signal noise. 1

I. INTRODUCTION

With the advent of nanotechnology, it is desirable that
digital systems exhibit dynamic defect-tolerant attributes.
It has been shown in [10] and [13] that reconfigurable
logic architectures like field-programmable gate arrays
(FPGAs) may mitigate both manufacturing and transient
defects common to nano-substrates. Also, [11] analyzes
the NAND multiplexing [14] and reconfiguration fault-
tolerant techniques, and presents a defect- and fault-tolerant
architecture in which multiplexing (with a low degree of
redundancy) is combined with a massively reconfigurable
architecture. This points out the fact that different degrees of
redundancy need to be applied at different granularity levels
(such as gate level, configurable logic block (CLB) level, etc.
[6]) to make systems cost-effectively reliable. Our goal is
to map Boolean functions onto reconfigurable logic blocks
with adequate redundancy so that the resulting logic network
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computes the intended function with higher reliability.
In order to achieve this, in-depth analysis is required to
find suitable redundancy and granularity levels for specific
reliability measures of such architectural configurations.

Main Results: In previous work [2], [5], the MRF based
model of computation (discussed in detail later) has only been
used to analyze combinational Boolean networks. In this work,
we have implemented a loopy Belief Propagation algorithm [8]
so that sequential circuits (such as sequential CLBs) can also
be analyzed with our tool NANOLAB. We have incorporated
capabilities to configure logic networks dynamically and to
dynamically introduce faults such as stuck-at faults or single-
event upsets (SEUs). These NANOLAB enhancements are
major contributions enabling dynamic fault injection and the
modeling of reconfigurable logic. It has been stated by experts
that due to their regularity and simplicity, reconfigurable
logic architectures may be some of the earliest programmable
architectures implemented using nano-scale technology. Thus,
in this paper, we show how different configurable blocks can
be modeled with NANOLAB. We are also in the process of
modeling complex networks using CLBs that are widely used
(Xilinx, Actel). We claim that such an attempt to analyze
granularity and redundancy levels of reconfigurable nano-
architectures has not been undertaken in the past. [13] and
[10] propose methodologies to locate manufacturing defects
in the reconfigurable fabrics and form accurate defect maps
which encompass all the fault locations. Such maps can be
used to layout circuits on the fabrics so as to avoid the defec-
tive devices. We suggest a methodology wherein a Boolean
network is mapped onto a defect-prone reconfigurable nano-
architecture with suitable redundancy either at the application,
CLB or gate levels, such that higher reliability of computation
is achieved in the presence of faults (both static and dynamic).

II. BACKGROUND

MRF-Based Methodology: The basis for the approach in
[2] is based on Markov Random Fields. An MRF is defined
as a finite set of random variables,
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(a) C-cell from Axcelerator family FPGAs (b) Core Logic Tile from ProAsic Flash family FPGAs

Fig. 1. Configurable Logic Blocks (CLBs) from Actel [1]

variable ��� has a neighborhood, N � , which has variables from
� � - ���
 . The probability distribution of a given variable
depends only on a (typically small) neighborhood of other
variables that is called a clique. Due to the Hammersley-
Clifford theorem [4],
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The conditional probability in equation 1 is the Gibbs
distribution. Z is the normalizing constant and for a given
node i, C is the set of cliques. U 8 is the clique energy function
[2] and depends only on the neighborhood of the node whose
energy state probability is being calculated. The logic margins
of nodes in a Boolean network decrease at higher values of
KT and increase at lower values. The logic margin in this
case is the difference between the probabilities of occurrence
of a logic low and a logic high. Higher logic margins result in
better reliability of computation. This formulation also allows
correct analysis of entropy values, since the entropy in the
system is inversely proportional to the logic margin. Thus,
this methodology not only provides a different non-discrete
model of computation, in fact, it relates information theoretic
entropy and thermal entropy of computation in a way so
as to connect reliability to entropy (discussed in detail
later). It has been shown that the thermodynamic limit of
computation is 9;:=<?>A@ [3] where KT is the thermal energy
(K is the Boltzmann constant and T is the temperature in
Kelvin) and is expressed in normalized units relative to the
logic energy (clique energy). The thermodynamic limit of
computation is the thermal energy that is proportional to
the minimum entropy loss due to irreversible computation.
If we consider energy levels close to these thermal limits,
the reliability of computation is likely to be affected. The
model of computation in [2] considers thermal perturbations,
discrete errors and continuous signal noise [7] as sources of
errors. The idea is to use a Gibbs distribution based technique
to characterize the logic computations by Boolean gates and
represent logic networks as MRFs and maximize probability
of being in valid energy configurations at the outputs.

Defect- and Fault-Tolerance through Reconfiguration: A
computer architecture that can be configured or programmed
after fabrication to implement desired computations is said to
be reconfigurable. Reconfigurable fabrics such as FPGAs are
composed of programmable logic elements (often referred to
as CLBs) and interconnects, and these can be programmed
or configured to implement any circuit. Defect-tolerance can
be achieved in FPGA-like architectures by detecting faulty
components during testing and excluding them during re-
configuration. It is expected [13] that reconfigurable fabrics
made from next generation manufacturing techniques will go
through a post-fabrication testing phase during which these
fabrics will be configured for self-diagnosis. The test circuits
placed on the fabric during this self-diagnosis phase will
utilize resources that will be available later for normal fabric
operation. The testing can be done with massive parallelism,
drastically reducing test time. While such reconfigurable ar-
chitectures may aid in circumventing manufacturing defects at
the nano-scale, architectures such as the Cell Matrix [10] have
been proposed to support dynamic defect tolerance.

In this study, we are analyzing some simple configurable
logic block structures for their defect- and fault-tolerance
in nano-scale implementations. Figure 1 shows the two
specific CLBs analyzed for this study that are found
in commercial Actel FPGAs. Note that these CLBs are
examples of reconfigurable core logic, and, eventually, we
plan to analyze more of these. The C-cell in Figure 1(a) is
from the Axcelerator (AX) anti-fuse FPGA family while the
core tile shown in Figure 1(b) is from the ProAsic BDC�E�F flash
FPGA family (see [1] for more information on these FPGAs).
Our analysis of these architectures are not concerned with
a specific memory technology for holding the programming
data but, rather, how the basic logic cells can be made more
reliable for nano-scale implementation using redundancy at
various architectural levels.

Loopy Belief Propagation: The computation of posterior
marginals on nodes in an arbitrary Bayesian or Markov
Random network is a NP-hard problem [9]. Different Be-
lief Propagation algorithms and approximation schemes have



been proposed in the past, and attempts have been made
to categorize different types of networks for which each
algorithm works best. In this work, we have implemented
a technique called Unwrapped tree [8] to analyze loops in
the sequential portions of the ProAsic BGC�EGF core logic tile
(shown in Figure 1(b)). To illustrate the technique, let us walk
through an example. Figure 2 shows a network G that forms
an undirected cycle composed of four nodes � 1, 2, 3, 4 
 . To
analyze the marginal probability values at each of these nodes,
G is translated to T which is the corresponding unwrapped
tree. T is an acyclic graph that is locally equivalent to the
original graph, G.

The unwrapping technique is as follows: choose an arbitrary
node r and initialize T = r (in Figure 2, node 1 is chosen). For
each leaf node m of T, find the neighbors of the corresponding
node in G, other than the parent of m in T. Add these
nodes to the tree. The probability distributions at the nodes
of both G and T remain same. The probability values at
the leaves of T are compared. When they become equivalent
(approximation thresholds may be defined), the beliefs are said
to have converged. The cycle is unwrapped till convergence
is achieved, but it has also been observed in [9] and this
work that when loops are present in networks, messages may
circulate indefinitely around the loops and the algorithm may
not converge to a steady state. Thus, a restriction may be
imposed on the depth of the tree T (number of times the loop
in the Boolean network is unwrapped) such that the algorithm
does not form an infinite chain.
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Fig. 2. Unwrapped Tree - Technique for Analyzing Loopy Belief Propagation

III. NANOLAB AND OUR METHODOLOGY

NANOLAB [5] is a MATLAB based reliability evaluation tool,
that uses entropy as the reliability metric. In the context of this
paper, we define entropy as the measure of the disorder of a
system. It is considered to have high values when the system
under consideration is very disordered (hence unreliable).
Let us consider a random variable H , which must take on
one of the values I��KJ�IL�MJON?N6N6N?J�I�P with respective probabili-
ties Q	��JRQL�KJ0N6N6N?N6JRQLP . Then, the expected degree of uncertainty
(randomness) in the system that is dependent upon H is:ST� HU���V�XW � QL�ZY�[R\�] � QL��� . This is information entropy of the
random variable H , which can be interpreted as the average
amount of uncertainty associated with the random variable H .

NANOLAB automates the MRF-based methodology briefly
discussed in Section II. It consists of a library of functions and
a Belief Propagation algorithm [12] that can compute energy

distribution and entropy at the primary/intermediate outputs
and interconnects of arbitrary Boolean networks, given discrete
or continuous (signal noise) energy distributions at the primary
inputs and interconnects of the circuits. These functions work
for any generic one-, two- and three- input logic gates and can
be extended to handle n-input logic gates as well as take in as
inputs the logic compatibility function (similar to truth table)
[2] and the initial energy distribution for the inputs of a gate.
Energy distributions are returned as vectors by these functions
and indicate the probability of the output of a gate being at
different energy levels between 0 and 1.These probabilities are
also calculated over different values of KT to analyze thermal
effects on the node. NANOLAB also consists of functions that
can model noise either as uniform or Gaussian distributions or
combinations of these, depending on the user specifications.
Arbitrary Boolean networks in any redundancy-based fault-
tolerant architectural configuration can be analyzed by writing
simple MATLAB scripts that use these NANOLAB library
functions.

We have enhanced the capabilities of our tool by devel-
oping libraries for the core CLBs in Figure 1. The dynamic
programming of these core logic blocks are controlled by
configuration files that are given as inputs to these libraries
along with energy distributions at the inputs of these CLBs.
Errors can also be introduced in these configuration files
either interactively or by using some specific error distribution.
Entropy values and energy distributions at the outputs of the
CLBs are returned by the libraries. For modeling the sequential
part of the core logic tile shown in Figure 1(b), we have
implemented the Unwrapped tree loopy Belief Propagation
algorithm discussed in Section II. But due to external posterior
marginal probabilities (dependencies) in the loop of the logic
tile, the Belief Propagation algorithm sometimes does not
converge within the threshold number of iterations. We are
looking at approximation schemes to solve this problem. We
have also used loop unrolling to implement the sequential
portion of this logic block, and this technique seems to work
better but with lesser degree of probabilistic accuracy.

With such a framework, we expect to analyze different
reliability-redundancy trade-off points at different levels of
granularity [6] such as at the gate, CLB level or the application
levels. For instance, at the application level, multiple CLBs
may be used to implement a redundant function with voting;
at the CLB level, the architecture itself may triplicate CLBs
and vote on their outputs; and, at the gate level, individual
gates or components within the CLB may be made redundant.
As our tool has been augmented with the capability to handle
sequential circuits, we can analyze complex systems with
NANOLAB. Both thermal perturbations and signal noise can
be introduced in the FPGA models, and different hardware
redundancy based techniques may be adopted within the
reconfigurable architectural framework.

IV. EXPERIMENTS AND RESULTS

Reliability and Entropy Measures of Axcelerator CLB:
Figure 3 (a) indicates the entropy values when the C-cell
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Fig. 3. Entropy and Energy distribution at the outputs of different CLBs

is configured to perform a two-input OR function. The
entropy values are plotted through the 4th order CTMR for
different 9;: values. It can be observed that as redundancy
is increased by adding more CTMR orders, the entropy
decreases (logic margin and reliability increases) at lower
9;: values. However, the rate of improvement in reliability
decreases once the 2nd order CTMR is reached, and further
augmentation of redundant devices does not improve the
reliability of computation appreciably. It can also be seen
that the 3rd and 4th order CTMR have almost equivalent
entropy values at different thermal energy levels. This result
can be interpreted as follows: for a certain redundancy level,
the system’s reliability for a given configuration reaches a
steady state. Any further increase in redundancy may either
marginally improve the reliability or even worsen it.

Energy distributions at the Output of the ProAsic CLB:
NANOLAB can also be used to compute the probability of
different energy configurations and, thus, the reliability at the
primary outputs of a Boolean network. Figure 3 (b) and (c)
show the energy distributions at the outputs of a TMR and
a 6th order CTMR configuration applied to the ProAsic core
logic tile functioning as an OR gate, respectively. Note that
the probability values are based on bin sizes of ^)N6_ . It can be
seen that the logic margins for the output (z) at KT values
of ^N?_ , ^)N`@Ma and ^N a are higher for the higher CTMR orders.
Also, the probability of z (p(z)) being at logic low is higher
than being at one because of the configuration and the input
distribution for the CLB. It is also observed that at a KT
value of one, the logic margin for any CTMR configuration
becomes really small (output energy distribution becomes
almost uniform) and remains the same even with an increase
of redundancy resulting in unreliable computation. Comparing
these different orders of CTMR in Figure 3, we infer that for
lower thermal energy levels, the probability of being in a valid
energy configuration increases as more redundancy is added
to the architecture. But further experimental results show that
this increase in probability slows down as higher orders of
CTMR are reached. This can be understood as follows: the
logic margin of the system reaches a saturation point after

which reliability can no longer be improved.
In summary, we have shown how we enhanced NANOLAB

by augmenting capabilities to analyze reliability-redundancy
trade-offs of reconfigurable FPGA-like architectures. Also, we
have implemented a loopy Belief propagation algorithm such
that NANOLAB can now be used to model sequential circuits
and CLBs. This makes our tool more effective in analyz-
ing reliability measures of different sequential reconfigurable
Boolean networks.
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